Characterization of DILI Risk from Post-Marketing Reports

January 26, 2006

Mark Avigan, MD CM
Director, Division of Drug Risk Evaluation
Office of Drug Safety
CDER, FDA

Division of Drug Risk Evaluation DILI Risk Assessment Functions

Post-marketing

- Detection & evaluation of safety signals
- Assessment of epidemiological risk
- Analysis of phase IV studies

Pre & Peri Drug Approval

• Determination of appropriate risk management measures based on risk/benefit profiles

Overview of Presentation

- Tools used by DDRE to detect & characterize DILI risk
- Approaches to develop & assess an AERS case series
 - characteristics of interest
 - causality assessment
 - search strategy and case definition steps
- Tools limitations in spontaneous report & reporting rate interpretation
 - clinical trial to elucidate AERS DILI signal
 - safety data bases
 - epidemiological databases
- Summary

Post-Marketing DILI Association Sources of Information

• AERS

- Manufacturer's reports
 - '15 day' reports; serious unlabeled AEs
 - direct reports; often from pharmacists or consumers
- International sources
 - WHO Uppsala Monitoring Center
 - Communications with EMEA, Canada, Australia, New Zealand
- Published Literature
- Clinical study databases; Pre/Post-approval studies
- Epidemiologic / Administrative claims-based databases
- ? DILIN; ? ALFSG

Adverse Event Reporting System (AERS)

- Voluntary, 'spontaneous' reporting system
 - Sponsors required to report (21CFR314.80)
- Computerized database
- Origin 1969; > 3 million reports of human drugs & therapeutic biologics (not vaccines)
- Especially useful to detect safety signals with rare background rates, short latencies not confounded by other Rxes or medical conditions
- NMEs can be screened with data-mining to measure disproportionality of AEs using Bayesian approach

Evaluation of DILI with AERS

- Search using MedRA terms (PT, HLT, HLGT, SOC) is broad
 - MedRA terms used include: Hepatic Failure & Associated Disorders (HLT), Hepatic Fibrosis and Cirrhosis (HLT), Hepatic Necrosis (PT), Hepatitis Fulminant (PT), Liver Transplant (PT)
- Case definition is used to refine series by exclusion of non-pertinent cases obtained in search. Criteria of dx, range of injury type/severity, clinical/lab information can be included
 - Acute Liver Failure': Lab evidence of hepatic necrosis, onset of symptoms/signs temporally related to drug; Encephalopathy; No serological evidence of viral hepatitis; No competing causes of acute liver insult, progressive liver disease or other hepatotoxic drugs

Evaluation of DILI with AERS

- AERS limitations
 - Extensive fluctuation in reporting levels & underreporting
 - Variability in quality of reports
- Calculation of AE reporting rates
 - Numerator: number of de-duplicated case reports
 - Denominator: measure of drug exposure
 - Not a measure of true incidence
 - May be compared to background rate(s) in population
- Causality analysis

Evaluation of DILI with AERS Causality Assessment

- Causality scoring of *individual* cases performed as a *distinct* analysis of signal strength
- Inconsistencies in expert scoring often due to differences in weight given to
 - presumed mechanism(s) of liver injury by suspect drug (e.g. idiosyncratic hepatocellular necrosis, cholestatis, mitochondrial toxicity, autoimmune)
 - confounding factors (other liver disease(s), toxic drug(s), etc.)
 - absence of important diagnostic information
 - assumptions about converging/synergistic liver injury pathways (e.g. Are pathways of injury unrelated? Is severity of injury determined by additive effects of separate processes? Is there a threshold of injury which depends on synergism between 2 pathways?)

Evaluation of P-M DILI Case Series Characteristics of Interest (1)

- Are the numbers of reported cases of clinically significant DILI disproportionate with respect to other AEs?
- What is the range/distribution of clinical severity of liver injury among the cases?
- What are relationships between suspect drug dose, duration of exposure & patient susceptibility factors with liver injury?
- Is there a signal of liver injury in the clinical trial safety database typically based on imbalances between drug & placebo/comparator arms of RCTs? (mild/reversible serum transaminase elevations? Hy's cases?)
- What are the patterns of liver injury? Are these distinct from those associated with an underlying disease or concomitant drug?

Evaluation of P-M DILI Case Series Characteristics of Interest (2)

- How many cases are confounded by underlying disease or concomitant drugs that cause liver injury?
- What is the range and distribution of causality assignments in cases with clinically significant DILI (highly likely, probable, possible, unlikely, etc.)? How many 'likely' or 'probable' cases are there?
- Is the suspect drug an unambiguous cause of liver injury in some cases?
- Based on usage, what burden (incidence and range of clinical outcomes) of adverse events might be projected in the US population?

Causality Assessment Possible Scenarios

- Differences in scoring among experts
 - small vs wide variations
- Number of cases that meet case definition
 - small vs large numbers
- Distribution of scores
 - all cases scored in 'unlikely' & 'possible' range vs some in 'probable' & 'likely' range

Causality Assessment of AERS Cases Link to population based risk?

- Case series is not a prospective controlled experiment
- Presence of 'likely' cases is helpful since it demonstrates that the suspect drug causes DILI
- Absence of 'likely' cases does not exclude a causal association with the suspect drug, especially when concomitant factors are necessary for injury to occur. Other drugs/confounding causes of liver injury may be synergistic or additive with DILI induced by the suspect drug
- Risk evaluation should take into account other pertinent info
 - clinical trial data
 - common structures or modes of action in drug class
 - plausible mechanism(s) of liver injury
 - distinct clinical/laboratory characteristics?
 - signature temporal or dose effects?
 - typical LFT profile?

Causality Assessment of Individual Cases Bayesian Probability Approach

 $P(D \rightarrow E) \mid B, C$ $P(D \rightarrow E) \mid B, C$

 $\begin{array}{ccc}
& \underline{P} \ (\underline{D} \rightarrow \underline{E}) \ | \ \underline{B} \\
& \underline{P} \ (\underline{D} \not\rightarrow \underline{E}) \ | \ \underline{B}
\end{array}$

 $\begin{array}{ccc} \mathbf{X} & \mathbf{P} & \mathbf{C} \mid (\mathbf{D} \rightarrow \mathbf{E}) \\ & \mathbf{P} & \mathbf{C} \mid (\mathbf{D} \not\rightarrow \mathbf{E}) \end{array}$

for causality)

Posterior Odds

(Overall Probability)

Prior Odds

(Clinical trial &

Epidemiologic data)

Likelihood Ratio

(Individual case data

Legend

P: Probability

 $\mathbf{D} \rightarrow \mathbf{E}$: Drug caused event

 $\mathbf{D} \not\rightarrow \mathbf{E}$: Drug did not cause event

B: Baseline information

C: Case event

^{*}From: Pharmacoepidemiology, Fourth Edition (2005); Determining Causation from Case Reports; Judith K. Jones; Ed. B.L. Strom

Causality Assessment Bayesian Probability Approach

- Posterior (overall) probability of individual case causation by a suspect drug based on:
 - what is known about (quantitative) probability of drug causation prior to event
 - causality assessment of individual case
- Presence of some 'likely' or 'probable' cases consistent with a significant risk for DILI
- Proportion of 'likely' cases in the series cannot be translated to a 'prior odds' factor to assess an individual case since the series may not be representative of all cases in the population

Tools to 'take measure' of an AERS DILI signal

- Spontaneous reports of severe DILI, ALF, liverrelated deaths; numbers & reporting rates
- Clinical trial database sufficiently powered to enable projection of incidence or other quantitative measures of drug related risk
- Epidemiologic database(s) linked to medical records with sufficient drug exposure to enable case control or cohort studies of DILI

'Serious' Hepatotoxicity AERS Reports * US Crude Counts: 5 Drugs

	2001-2002	2003-2004
Acetaminophen	145	223
Troglitazone	222	1
Clavulanate	1	2
Valproic Acid	7	1
Isoniazid	5	9
Phenytoin	14	9

^{*}Duplicate reports included. MedDRA terms: Hepatitis Fulminant (PT), Liver Transplant (PT), Hepatic Necrosis (PT), Hepatic Failure and Associated Disorders (HLT), Hepatic Fibrosis and Cirrhosis (HLT)

AERS Report Numbers 'Liver' Signal Characterization

- Even without quantitative risk info, consistently higher numbers of 'serious' liver injury/ALF reports (e.g. APAP and troglitazone) are consistent with higher DILI frequencies
- In the absence of reliably measured usage between products reporting rate comparisons are not possible
- 'Weber' effect pertains to reduced AE report numbers of older products

Clinical Trial Safety Databases Risk projection/confirmation

Things to look for:

- Imbalances of transaminase elevations; drug vs placebo
- Hy's cases
- Equivalent enrolled patients and study protocols which may enable safety outcome comparison with other agents
- Randomized comparisons of safety outcomes between therapeutic agents/members of a class

Study protocol caveats:

- Were patients with susceptibility factors enrolled?
- Was threshold dose/duration/exposure for toxicity exceeded?
- Was LFT monitoring and F/U adequate?
- 'Capping' risk for rare serious outcomes is linked to study power (drug exposure)

Thiazolidinediones

NDA Safety Databases & ALF Reporting Rates

Clinical Trial Data

AERS

Drug	n	% ALT>3xULN	% ALT>10xULN	ALF fatal + x-plant report rate per 10 ⁶ pt-yrs
Troglitazone	2,510	1.9	0.68	63
Placebo	475	0.6	0	
Rosiglitazone	3,503	0.2		3*
Placebo	574	0.2		
Pioglitazone	1,526	0.3		4*
Placebo	793	0.3		*1999-2004

Troglitazone NIH Diabetes Prevention Trial

- 585 patients Rxed with Troglitazone
- ALT > 3X ULN: 18/585 (3.0%)
- ALT > 8X ULN: 9/585 (1.5%)
- ALT > 30X ULN: 2/585 (0.3%)
- ALF: 1/585 (rate ~ 1,724 per 10⁶ pt-yrs*)

* 95% CI: 44 - 9,569 per 10⁶ pt-yrs; ALF background rate ~ 1 per 10⁶ pt-yrs based on epidemiologic studies in US, Canada & U.K.; FDA Metabolic-Endocrine Drugs AC, March 26, 1999

Epidemiological Databases Risk projection/confirmation

- Large health care organizations; claims data linkage to Rx info; access to medical records
- Case control & observational retrospective inception cohort designs
- Often sufficient drug exposure to detect rare AEs
- Analysis depends on
 - sufficient drug exposure; lag effect after drug is introduced into market;
 analysis often antecedes initial AE signal detection
 - reliable/consistent disease classification (ICD codes); validation required
- Analysis limited if
 - high AE background rates
 - results not generalizable to other populations
 - high patient turnover or loss to f/u
 - incomplete medical records
 - biases in comparator groups

Troglitazone

Incidence of ALF/DILI in Health Care Organization*

- UnitedHealth Group: ~ 3 million persons
- Rx 4/97 12/98; Completed analysis: 2002
- ICD-9 code identified liver cases; Medical records reviewed
- 7,568 patients Rxed with Troglitazone; 4,020 patient-yrs
- 19 patients with liver-related hospitalization
- 5 patients with DILI; Incidence rates (point estimates):

```
    Hospitalization (n = 5): 1,244/10<sup>6</sup> patient-yrs
    Jaundice (n = 4): 995/10<sup>6</sup> patient-yrs
    ALF (n = 1): 240/10<sup>6</sup> patient-yrs
    (95% CI: 404 - 2,900)
    (95% CI: 271 - 2,546)
    (95% CI: 6.3 - 1,385)
```

- Demonstration of range & distribution of clinical outcomes in patients with Troglitazone associated DILI
- Results consistent with clinical trial and AERS data; enhance quantitative evaluation of DILI risk although limited by wide CIs

Summary (1)

- AERS is a critical surveillance tool to identify drugs that cause DILI & characterize clinical/laboratory features of DILI cases linked to a suspect drug
- Causality analysis is useful to determine whether the causal link of a suspect drug with DILI is real, especially if there are 'likely' or 'probable' cases
- The presence of a substantial number of 'likely' or 'probable' cases is consistent with increased risk for a suspect drug to induce DILI. Nonetheless, it would be problematic to use the proportion of such cases in a series to inform causality assessments of other cases (using a Bayesian approach) since they are spontaneous reports and are likely not to be representative of all drug-associated cases

Summary (2)

- Absence of 'likely' or 'probable' cases does not necessarily correlate with lack of a causal association between a suspect drug and DILI
- Confounding factors may be synergistic or additive with a suspect drug to promote hepatotoxicity, sometimes associated with a different clinical/lab signature than with the drug or confounding factors alone
- Each methodological approach for DILI risk evaluation has significant limitations
- Results of spontaneous reports, clinical trial safety datasets, epidemiological studies & DILI registries complement one another in the detection & characterization of DILI risk

Backup slides

Clinical Scales of Causality General Criteria

- Temporal relationship between Rx and liver injury
- Exclusion of alternative Causes
 - caveat: drug-induced toxicity might aggravate injury of underlying chronic liver disease
- Extrahepatic manifestations of hypersensitivity
- Dechallenge/Rechallenge
- Risk factors
- Bibliographic information
- Although limited because of incomplete info, it is often useful to assign each AERS report of ISLI/ALF/death a 'score' to establish likelihood of causality.

CIOMS Diagnostic Scale*

Individual Criteria	Range of Scores
Time from start of Rx until event	+1 to +2
Time from stop of Rx until event	0 to +1
Course after stop of Rx	-2 to +3
Age	0 to +1
Alcohol/Pregnancy	0 to +1
Concomitant Rx	-3 to 0
Non drug-related causes	-3 to +2
Previous drug information	0 to +2
Dechallenge/Rechallenge	-2 to +3

Causality Assessment: Total Scores

Highly Probable: 8-10; Probable: 6-8; Possible: 3-5; Unlikely: 1-2

^{*}Danan & Benichou, J. Clin. Epidemiol.; 1993

Attribution of Causality to Drug(s) in AERS Reports of Hepatotoxicty

- Rules of differential dx are no different than in premarketing studies or at bed-side
- Analysis of causality requires informative reports
 - Accuracy of attribution is enhanced by
 - use of consistent criteria (e.g. CIOMS, CDS or M&V scales)
 - proactively pursuing patient info including medical records
- Absence of adequate info/patient histories is major stumbling block. Lack of critical info does not imply lack of causality!
- Presence of underlying liver disease may cause confusion